
 Maze Solving Algorithms for Micro Mouse

 Swati Mishra

swati.mishra.07@gmail.com
Inderprastha Engineering College, Ghaziabad

Pankaj Bande
pankajb@isquareit.ac.in

International Institute of Information Technology,Pune

 Abstract

The problem of micro-mouse is 30 years old but its
importance in the field of robotics is unparalleled, as it
requires a complete analysis & proper planning to be
solved. This paper covers one of the most important areas
of robot, “Decision making Algorithm” or in lay-man’s
language, “Robot Intelligence”. For starting in the field
of micro-mouse it is very difficult to begin with highly
sophisticated algorithms. This paper begins with very
basic wall follower logic to solve the maze. And gradually
improves the algorithm to accurately solve the maze in
shortest time with some more intelligence. The Algorithm
is developed up to some sophisticated level as Flood-Fill
algorithm. The paper would help all the beginners in this
fascinating field, as they proceed towards development of
the “brain of the system”, particularly for robots
concerned with path planning and navigation.

Keywords: Mobile Robot Navigation, Algorithms,
Micromouse, Flood fill, Djikstra

1. Introduction

Autonomous agents are mobile versatile machines
capable of interacting with an environment and executing
a variety of tasks in unpredictable conditions. Autonomy
means capability of navigating the environment;
navigation, in turn, necessarily relies on a topological and
metric description of the environment [6].
One of the major components for the creation of
autonomous robot is the ability of the robot to “plan its
path” and in general the ability to “plan its motion”. In a
limited or carefully engineered environment it is possible
to program the robot for all possible combinations of
motions in order to accomplish specific task [2]. The
problem of path planning is not confined to the field of
robotics but its applications exist in various genres. For
example, molecule folding, assembly/disassembly
problems and computer animations are areas where
comparable problems arise [7].
A robot is a mechanical device, which performs
automated physical tasks, either according to direct

human supervision, a pre-defined program, or a set of
General guidelines using artificial intelligence techniques.
There is a paradigm shift in engineering education from
conventional classroom teaching to hands on projects,
robotic projects are very useful for students who have to
deal with an open ended problem and this way their
creativity is stimulated. As project incorporates wide
range of engineering fields, they can convert variety of
theoretical study into practice. Furthermore, they learn
teamwork.
To stimulate this learning process in upcoming
engineering, a wide range of robotic competitions is
conducted world wide, and the most sought after among
them is MICROMOUSE. It is one of the most efficient
ways to inculcate the true "engineering values" in
students. As mentioned above, the change in the mode of
education is under revolution, as a result of which not
much students are exposed to the field of robotics.
Traditional maze solving algorithms, while appropriate
for purely software solutions, break down when faced
with real world constraints. When designing software for
a maze-solving robot, it is important to consider many
factors not traditionally addressed in maze solving
algorithms. Our information about the maze changes as
we explore, so we must make certain assumptions about
unseen portions of the maze at certain steps in most
algorithms.

2. The Wall Follower Logic

2.1. Maze Interpretation

The maze in the Micromouse competition consists of
multiples of an 18cmx18cm square. It consists of 16x16
unit squares. It has a center, which is the destination cell
for the Micromouse. The robot has to search the entire
maze and find the path that it can travel in the shortest
possible time. This maze is a standard used in all the
competitions held worldwide by the IEEE and other
standard Institutions. So we have maintained these
standards for use in our experimentation. Here we have

2008 IEEE International Conference on Signal Image Technology and Internet Based Systems

978-0-7695-3493-0/08 $25.00 © 2008 IEEE
DOI 10.1109/SITIS.2008.104

86

2008 IEEE International Conference on Signal Image Technology and Internet Based Systems

978-0-7695-3493-0/08 $25.00 © 2008 IEEE
DOI 10.1109/SITIS.2008.104

86

taken standard mazes for better comparison of efficiency
of any of the logics described. The maze is interpreted in
the form of a two dimensional array, with each cell
represented by coordinates.
Rows and columns distinguish the array, rows denoted by
'R' and columns denoted by 'C' hence, the increment and
decrement in R and C will signify different cells. Now,
the movement of the Micromouse on the maze is purely
cell wise MAPPING.
When we interpret the maze mathematically, we develop
the approach towards solving a higher end algorithm that
is more complicated.
For this mathematical approach, we have assumed our
cells to be of dimensions 9cmx9cm.So virtually our maze
is of 32x32 unit squares. Henceforth, each REAL square
has been divided into two VIRTUAL squares. This solves
our problem a bit!

2.2. The basic algorithm

Here, we are developing the LEFT WALL FOLLOWER
LOGIC. This works on the rule of following the left wall
continuously until it leads to the centre. The RIGHT
WALL FOLOWER is similar; the only difference lies in
the wall being followed.
The Micromouse senses the wall on the left, and follows
it to wherever it leads until the centre is reached. This
simple logic used for solving the maze is demonstrated by
the following algorithm.
Step 1: Sense the left wall.
Step 2: If left wall present then flagl=1, if not
then flagl=0.
Step 3: If flagl=1 then step 4 else turn left by 90
degrees.
Step 4: Sense the front wall.
Step 5: If front wall present then flagf=1, if not then
flagf=0.
Step 6: if flagf=0, move straight else turn right by 90
degrees.
Step 7: return to step1.

2.3. Problems encountered

The biggest of its loopholes is its inefficiency to stop the
execution by itself. Another of its drawbacks is the
"absence of intelligence" in the device. It does not have
the ability to detect its position and direction, and
determine whether or not, during is course of path
finding, it has reached the centre or not.
To overcome the above problems, the micro-mouse maze
solving algorithm is modified mathematically as follows.

2.4. A mathematical approach

Here, we assume an array of 32 rows and 32 columns &
the starting cell indicating 0th row & 0th column. If the
array is denoted by M, then each cell is represented by
M[R][C]. We assume the present position of array as M2
[R2][C2] , the previous position as M1[R1][C1], and the
next position as M3[R3][C3].
If R2-R1>0, then it is currently moving straight, upwards
through the maze array.
If R2-R1<0, then it is currently moving straight,
downwards through the maze array.
If C2-C1>0, then it is currently moving rightwards,
through the maze array.
If C2-C1<0, then it is currently moving leftwards, through
the maze array.
I. FOR STRAIGHT MOVEMENT,
 Upwards: R3=R2+1, C3=C2
 Downwards: R3=R2-R1, C3=C2
 Rightwards: R3=R2, C3=C2+1
 Leftwards: R3=R2, C3=C2-1
II. FOR 90 DEG RIGHT TURN,
 Upwards: R3=R2, C3=C2+1
 Downwards: R3=R2, C3=C2-1
 Rightwards: R3=R2-1, C3=C2
 Leftwards: R3=R2+1, C3=C2
III. FOR 90DEG LEFT TURN,
 Upwards: R3=R2, C3=C2-1
 Downwards: R3=R2, C3=C2+1
 Rightwards: R3=R2+1, C3=C2
 Leftwards: R3=R2-1, C3=C2.
IV. FOR CHANGING THE POSITION AFTER
THE ROBOT MOVES AHEAD,
 R1=R2, C1=C2, R2=R3, C2=C3

Figure1. Left wall follower: solvable maze

8787

Image 1. Left wall follower sample maze solved
White line shows the path followed by robot.
The time taken by the robot can be calculated by
assuming the cell to cell movement time to be 2.5 sec. and
the turning time to be 1 sec. then the total time taken by
the robot is (140×2.5) + (27×1) = 404sec. for reaching
the centre of this maze. The above wall follower logic has
been implemented on a sample realistic maze of 5x5
units.(as defined by the IEEE standards)
There are however, limitations with this algorithm, which
is, that it can solve mazes of a particular style only.

Figure2. Left wall follower: unsolvable maze
The above maze is not being solved using the left wall
follower logic. This is one of the drawbacks of this logic.
The algorithm is not efficient enough to solve the mazes
of high complexities and the ones which have multiple
paths leading to the centre.
The following practical demonstrations prove its failure

Image 2. Left Wall Follower micro-mouse in infinite
loop:

3. Djikstra’s algorithm

So we observe that the design of an autonomous
navigation system with multiple tasks to be
accomplished in unknown environments represents a
complex undertaking. With the simultaneous purposes
of capturing targets and avoiding obstacles, the
challenge may become still more intricate if the
configuration of obstacles and targets creates local
minima, like concave shapes and mazes between the
robot and the target. Pure reactive navigation systems
are not able to deal properly with such hampering
scenarios, requiring additional cognitive apparatus.
Concepts from immune network theory are then
employed to convert an earlier reactive robot
controller, based on learning classifier systems, into a
connectionist device. Starting from no a priori
knowledge, both the classifiers and their connections
are evolved during the robot navigation. [1]
As a conclusion from the above fact we now move a
step ahead and implement the Djikstra’s Shortest Path
algorithm for solving our problem. The algorithm deals
with finding the shortest path from a directed graph of a
given set of nodes.
The approach adopts a strategy of multi-behavior
coordination, in which a novel path-searching behavior is
developed for determining the shortest path [11].

3.1. Maze Solving

The input of the algorithm consists of a weighted directed
graph G and a source vertex s in G. We will denote V the
set of all vertices in the graph G. Each edge of the graph
is an ordered pair of vertices (u, v) representing a
connection from vertex u to vertex v. The set of all edges
is denoted E. Weights of edges are given by a weight
function w: E � [0, �); therefore w(u,v) is the cost of
moving directly from vertex u to vertex v. The cost of an
edge can be thought of as (a generalization of) the
distance between those two vertices. The cost of a path
between two vertices is the sum of costs of the edges in
that path. For a given pair of vertices s and t in V, the
algorithm finds the path from s to t with lowest cost (i.e.
the shortest path).So now this fundamental nature of the
algorithm can be used to find the graph. The stepwise
functioning of the algorithm has been described as below.

STEP 1: Start “ready set” with start node
Set start distance to 0, dist[s] =0;
others to infinite: dist[i]= (for i s);
Set Ready = { }.
STEP 2: Select node with shortest distance from the
starting point that is not in Ready set
Ready = Ready + {n}.

8888

STEP 3: Compute distances to all of its neighbors
For each neighbor node m of n
Check if dist[n] +edge (n, m) < dist[m]
If yes then dist[m] = dist[n] +edge (n, m);
STEP 4: Store path predecessors.
pre[m] = n;
STEP 5: Add current node to “ready set”.
STEP 6: Check if any node is left, if yes goto step 2
STEP 7: end.

Now the problem arises of how to generate the directed
graph G of the nodes we have talked about so far. So for
this we need to get the Micromouse traverse the whole
maze and generate the nodes! So the traversal function is
defined as follows.
Traverse ():
STEP 1: Move straight
STEP 2: Check if any wall is present in front. If yes, then
goto step 3 else goto step 1.
STEP 3: check if the current location is present in V, if no
then add the location in the set V, Calculate the distance
between the previous and the present location. Store the
value in the set E, else take 180 degree turn and traverse
to the previous entry of V.
STEP 4: Check if wall is present on right. If present, take
a 90 degree turn left if not then take a 90 degree turn
right.
STEP 5: Goto step 1
Repeat steps 1 to 5 till the entire maze is traversed.
Calculation of distance between two consecutive nodes is
done by adding a counter circuit at the base of the chasis
near the wheels so as to count the number of cells
between the destination and the source location. This
number would denote the weight of the edge E.
Each location is represented by a cell of a 16x16 two
dimensional array, cell being represented by [R, C], R
represents row, and C represents column. So the vertex
set V consists of a pair of variables [R, C] representing a
single node.

Figure 3. Maze as solved by Djikstra’s algorithm

After generating the graph the final algorithm is applied
on the graph and the shortest path reachable to the
destination node which is the centre is obtained.

The time taken by the robot can be calculated. If we
assume the cell to cell movement time to be 5 sec. and the
turning time to be 1 sec. then the total time taken by the
robot is (50*5) +(16*1)= 266 sec. for reaching the center
of this maze.
Now we see that it effectively calculates the shortest path
but to find that path it has to travel the entire maze. This
traversal is to generate the directed graph G. Though the
time taken to reach the centre is less but it takes more
time to traverse the maze. So if we calculate the total time
taken, then it would be more in this case.

Image 3. Maze being solved by Djikstra’s algorithm.
White line shows the path traversed by the device and the
white points show the nodes as perceived by the
algorithm.

3.2 Drawbacks of the algorithm

There are, however, problems in using this algorithm, the
major one being that the whole maze has to be traversed.
For identifying the nodes, it is important to travel all the
parts of the maze, irrespective of whether that portion of
the maze contains the shortest path or not. Now, this is
time consuming and also a lot of energy is wasted in the
traversal. This solution also requires a lot of time for
finding the shortest path as after the generation of the
connected graph G, it has to check for all the connections
that lead to the centre. This increases the execution time
of the algorithm. Even for smaller mazes it will have to
travel all the blocks before starting to find the shortest
path. This problem would be solved if we can design a
way where both the maze interpretation and path finding
are done simultaneously.
The other problem is that for counting the number of cells
to generate the edge set E, an additional hardware is
involved which includes a counter circuit that counts the

8989

rotation of the wheels and hence the distance between two
consecutive locations. This adds to the complexity of the
design and increases the probability of error in input data
from the external environment.
To avoid such complexities, we use yet another solution
to solve our problem which has been described below.

4. Flood Fill algorithm

The speed of robot to find its path, affected by the applied
algorithm, acts the main part in the present project. The
flood-fill algorithm involves assigning values to each of
the cells in the maze where these values represent the
distance from any cell on the maze to the destination cell.
The destination cell, therefore, is assigned a value of 0. If
the mouse is standing in a cell with a value of 1, it is 1
cell away from the goal. If the mouse is standing in a cell
with a value of 3, it is 3 cells away from the goal.
Assuming the robot cannot move diagonally [3].
The maze is represented as a 16x16 array in the memory.
The centre is given the value (0, 0).all cells in its
immediate vicinity are assigned 1, the cells next to it as 2,
and so on. The array is divided into 4 symmetrical regions
and then the assignment is done.
Upper left quarter, loop decrements the column,
increments the row: R= R+j, C=C-i, i, j vary from 0 to 8.
Upper right quarter, loop increments the column,
increments the row: R=R+j, C=C+i, i, j vary from 0 to 8.
Lower left quarter, loop decrements the column,
decrements the row: R=R-j, C=C-i, i, j vary from 0 to 8.
Lower right quarter, loop increments the column,
decrements the row: R=R-j, C=C+i, i, j vary from 0 to 8.

decr= 0, incr= 1 decr=0, incr= 1
decc= 1, incc=0 decc= 0, incc= 1

decr= 1, incr= 0 decr= 1, incr= 0
decc= 1, incc=0 decc= 0, incc=1

Figure 4. Values of the 4 variables in the 4 quadrants

So it is combined into a MATHEMATICAL EQUATION
as follows:

Row increment and decrement: R-(i*decr) + (i*incr)
Column increment and decrement: C-(j*decc) + (j*incc)

Now when the assignment is done, the entire equation is
as follows: (where the variables i, j vary in the loop from
0 to 8)

Image 4. An actual maze as depicted in the memory of
the micro mouse.
Formation of array temp [4] for each cell:
Each cell is interpreted as an array cell of a 2-d array and
is represented with a value, R and C, which represents a
row and column, respectively. The values, therefore, of
the neighboring cells are as shown in the diagram. The
values of the cell arrays are as according to the index
values assigned to a 16x16 array in the computer
memory. Initially the value of the first cell is assigned as,
R=1, C=1.

Figure 5. Storing elements in array; temp [4]

The values of the neighbors are stored in the above array.
After the values are stored in the array, they are sorted
using any kind of sorting. We have used here selection
sort.

After this, the array is ready for further processing, which
includes the deciding of which path to be taken and which
values in the map to be changed.

The maze after being flooded is then traversed and the
map of the maze is updated after every traversal. Every
time a new cell is traversed, it creates the array described
above and decides the lowest value nearby that can be

(R, C) (R, C-1)

(R-1, C)

(R+1, C)

(R, C+1)

MAZE[R-(i*decr) + (i*incr)][C-(j*decc)+j*incc)]
= i+j;

9090

traversed. The path followed is always from a higher
value to a lower value.

Main():
START: form array temp[4] for Maze[R][C].
STEP 1: From the array, select the ith element, (i=1
initially)
STEP 2: If the value temp [i]<= Maze [R][C] , then go to
step 4. If temp [i]>=Maze[R][C], call check(R,C).
Step 3: if the value temp [1]=256, turn 180 deg,
i=i+1,goto step 1
 STEP 4: locate the cell of the value temp [i].
STEP 5: check if the wall is present in the way, if yes
then, i++, go to step1
STEP 6: check if Maze[R1][C1]=temp[i+1], if yes,
then use call Locate(R, C, temp(i+1)) algorithm defined
below, to locate its cell.
STEP 7: store the result in (R2, C2)
STEP 8: call the function direction of move (R1, R2, C1,
C2)
 STEP 9: move to Maze (R’, C’)
STEP 10: update value, R=R’, C=C’
STEP 11: check if Maze[R][C]=0, if yes, call return to
start (), else go to START.
STEP 12: call follow ().

Decide which cell is preferable to move by using the
following algorithm: (direction of move (R1, R2,C1,C2))
STEP 1: check which cell is obstructed by a wall
STEP 2: move in direction of no wall, if wall is present
before all selected cells, then i=i+2, go to
STEP 3: give the priority to forward straight movement.
STEP 4: if the wall is in front, move towards right or left,
priority can be given to any direction.
STEP 5: if it is dead end, then move in backward
direction turn 180deg.
STEP 6: return the decided value in (R’, C’).

Location of the value in array, which is first dealt with, is
found by following routine:
STEP 1: Initialize: flag1=0, flag2=0, flag3=0, flag4=0
STEP 2: Locate(R, C, temp [i])
{check if temp [i]==Maze [R+1][C], if yes
flag1=1; R1=R+1, C1=C;
check if temp[i]==Maze[R-1][C], if yes
flag2=1; R1=R-1, C1=C;
check if temp[i]==Maze[R][C+1], if yes
flag3=1; R1=R, C1=C+1
check if temp[i]==Maze[R][C-1], if yes
flag4=1; R1=R, C1=C-1 }
STEP 3: Return (R1, C1)
The assignment of flags deals with the problem that arises
when more than one cell has the same value.
Check (R, C, i)
{Step 1: Maze[R][C]=temp[i] + 1

 Step 2: update()
 Step 3: return to step 2 of main()}

There is an updating based on the fact that the value of
the cell near the center is always less than the value of the
cell away from the center. So,

For 1<R<8, and 1<C<8, Maze[R+1][C]<Maze[R][C]
Maze[R][C+1]<Maze[R][C]

For 9<R<16, and 1<C<8, Maze[R+1][C]>Maze[R][C]
Maze[R][C+1]<Maze[R][C]

For 1<R<8, and 9<C<16,
Maze[R+1][C]<Maze[R][C]
Maze[R][C+1]>Maze[R][C]

For 9<R<16, and 9<C<16,
Maze[R+1][C]>Maze[R][C] Maze[R][C+1]>Maze[R][C]

So the equation which determines the update () function
is as follows:

If Maze [R-(i*decr) + (i*incr)][C-(j*decc)+j*incc)] >=
Maze [R-(i*decr) + (i*incr)][C-((j+1)*
decc)+((j+1)*incc)], then

Maze [R-(i*decr) + (i*incr)][C-(j*decc)+j*incc)]+1 =
Maze [R-(i*decr) + (i*incr)][C-((j+1)*
decc)+((j+1)*incc)], and

If Maze [R-(i*decr) + (i*incr)][C-(j*decc)+j*incc)] >=
Maze [R-((i+1)*decr) + ((i+1)*incr)][C-(j*
decc)+((j)*incc)], then

Maze [R-(i*decr) + (i*incr)][C-(j*decc)+j*incc)]+1 =
Maze [R-((i+1)*decr) + ((i+1)*incr)][C-(j*
decc)+(j*incc)]
Where i, j are variables varying from 0 to 8, in loop.

Figure 6. Maze solved through flood fill algorithm:
The above maze is solved using the flood fill logic. The

9191

time taken by the robot can be calculated. If we assume
the cell to cell movement time to be 5 sec. and the turning
time to be 1 sec. then the total time taken by the robot is
(50*5) +(16*1)= 266 sec. for reaching the center .

Image 5: Sample maze solved through flood fill
algorithm:
White line shows the path followed by robot.
5. Result:

Motion planning is a key requirement demanded of
autonomous robots. Given a task to fulfill, the robot has
to plan its actions including collision-free movement of
actuators or the whole robotic platform
A comparative study on the path length & time taken
performance of our robot with regards to different
algorithms is also done. Both simulation and real tests are
performed.
The comparison of different algorithms is as follows:
Table1: Comparison between various algorithms.

 Left
wall
Follow
er

Right
wall
Follow
er

Djikst
ra’s

Flood
fill

Cell to cell
movements

70 62 50 50

turns 27 25 16

16

Time taken
(in sec.)

307 283 266 +
extra
time
for
graph
gener
ation

266

The problem encountered in wall follower algorithm
either left wall or right wall follower is solved by
Djikstra’s algorithm. And this algorithm is once again
refined to Flood fill. The right/left wall follower logics
are restricted to a limited kind of the mazes only, while

the Djikstra’s algorithm can solve practically any kind of
maze. But it requires a lot of time for maze interpretation
and mapping which reduces its efficiency. This problem
is once again reduced in the Flood fill algorithm where
the maze interpretation or we can say map generation is
done along with the maze solving. Both the tasks
performed together improve the efficiency of the
micromouse. An elaborate analysis of the above
algorithms gives us a basis of how to proceed in path
planning, of intelligent devices capable of navigation.
Also we have used a standard IEEE maze for
experimentation. If we change the dimensions, the time of
traversal may change but the algorithm will not. In case of
non-uniform mazes, an extra hardware of a sensor would
be required to detect whether a cell has been traversed or
not. This would add to the complexity of the program.
The future work of this paper gives an emphasis on this
problem.

6. Conclusion:

Hence we conclude that, if we don’t have any time and
hardware constraint we can effectively use the Djikstra’s
algorithm, but if both are the constraints then Flood fill
would be superior to others. Further, if we do not wish to
have any complex calculation to embed in the system,
that means, if we have a memory constraint as well as the
maze to be solved is pretty easy, we can stick to the
left\right wall follower. But for this we need to have a
previous knowledge of the maze, whether it is right-
walled or left-walled. Thus, the flood fill is by far the
most effective of all, with fewer or almost no drawbacks
apart from complex software which is difficult to code.
The speed of robot to find its path, affected by the applied
algorithm, acts the main part in the present projects that
are concerned with robot navigation. While there is no
limitation to improve the algorithms, there are some
restrictions on developing robot’s mechanic or electronic.
Developing algorithm is usually cheaper than the other
parts.

7. Acknowledge:

The team is grateful to Prof. Rabinder Henry of
International Institute of Information Technology for
some useful discussions. We are also grateful to Prof. R.K
Bassi, Director(academics)Inderprastha Engineering
College and Prof A.K Giri, HOD(Electronics deptt.)
Inderprastha Engineering College, for their kind support.
The team is also thankful to friends for their useful
cooperation.

9292

8. References:

[1] Renato Reder Cazangi, Associate,
 Member, IEEE, and Fernando J. Von Zuben, Member, IEEE
“Immune Learning Classifier Networks: Evolving Nodes and
Connections” , IEEE Congress on Evolutionary Computation
,Canada, 2006

[2] Dimitris C. Dracopoulos;”Robot Path Planning for Maze
Navigation”, 1998.

[3] Babak Hosseini Kazerouni, Mona Behnam Moradi and
Pooya Hosseini Kazerouni;”Variable Priorities in Maze-Sloving
Algorithms for Robot’s Movement”, 2003.

[4] Sung-Hee Lee, Junggon Kim, F.C.Park, Munsang Km, and
James E.Bobrow;”Newton-Type Algorithms for Dynamics-
Based Robot Movement Optimization”, Digital Object
Identifier, 2004.
[5] Horst-michael gross, Alexander Koenig; “Robust
Omniview-basad Probilistic Self-loalization for Mobile Robots
in Large Maze-like Environments”, proceedings of the 17th
International Conference on Pattern Recognition, ICPR-2004.

[6] Shinichiro Yano, Manabu Noda, Hisahiro Itani, Masayuki
Natsume, Haruhiko Itoh and Hajime Hattori, Tadashi Odashima,
Kazuo Kaya, Shinya Kataoka and Hideo Yuasa, Xiangjun Li,
Mitsuhiro Ando, Wateru Nogimori and Takahiro Yamada; “A
Study of Maze Searching With Multiple Robots System”, 7th
International Symposium on MicroMachine and Human
Science, 1996.

[7] Frank Lingelbach; “Path Planning using Probabilistic Cell
Decomposition”, International Conference on Robotics &
Automation, 2004.

[8] Javier Antich and Alberto Ortiz; “Extending the potential
Fields Approach to Avoid Trapping Situations”, CICYT-DPI-
2001.

 [9] Gorden Mc Comb, Myke Predko,“Robot Builder’s
Bonanza”, Mc-Graw Hill, 2006.

[10] Thomas Braunl; “Embedded Robotics mobile robot design
and applications with Embedded systems”, Springer 2006.

[11]Meng Wang, James N.K. Liu, “Fuzzy Logic Based Robot
Path Planning in unknown Environment, the Fourth
International Conference on Machine Learning and Cybernetics,
Guangzhou, 2005

[12] Roland Buchi, Gilles Caprari, Vladimir Vuscovic, Roland
Siegwart; “A Remote Controlled Mobile Mini Robot”, 7th
International Symposium on MicroMachine and Human
Science, 1996.

9393

